“好奇号”自拍照
其他九项进展包括:
丹尼索瓦人基因组:德国马克斯·普朗克进化人类学研究所科学家开发出一种将特定分子与单股DNA相结合的新技术。通过这种技术,他们利用一个距今7.4万年至8.2万年的指骨碎片获得了丹尼索瓦人的基因组高覆盖率测序数据,重建其基因组全序列。从如此古老的样本中制作出高品质全基因组,意味着科学界在古代DNA测序领域取得巨大进步。
用干细胞制造卵子:日本京都大学研究小组今年10月报告说,他们首次利用诱导多功能干细胞成功培育出实验鼠的卵子,并使其受精从而诞出健康小鼠。实验结果未能达到科学家们的终极目标——完全在实验室中得到卵细胞,但它为研究基因及其他影响生育和卵细胞发育的因素提供了强有力工具。
“好奇”号火星车着陆系统:重达900多公斤的美国“好奇”号火星车8月6日借助由火箭提供动力的、名为“天空起重机”的助降系统缓缓在火星表面着陆。从进入火星大气层到着陆仅用了7分钟,虽然难度高、风险大,但着陆过程堪称完美。这也使美国航天局再次获得信心,希望有朝一日让另一辆火星车着陆,将“好奇”号搜集的样本回收并送回地球。
X射线激光给出蛋白质结构:一个科学家团队利用比传统同步加速辐射源亮10亿倍的X射线激光确认了布氏锥虫所需的一种酶的结构。这一进展证明用X射线激光照射的方式来解密蛋白质结构的可能性。
基因组的精密工程:对高等生物DNA的修改和删除一般而言无法确定结果。不过在2012年,一种名为“转录激活子样效应因子核酸酶”的工具赋予研究人员改变或消灭活的斑马鱼、蟾蜍、牲畜甚至病人细胞中特定基因的能力。这种技术被证明与基因靶向技术一样有效但较为廉价,而且能让研究人员确认基因及突变在健康人和病人中的特定作用。
马约拉纳费米子:它是一种反粒子就是自身的粒子,物理学界有关其是否存在的争论已持续了70多年。荷兰代尔夫特理工大学科学家今年首次观测到马约拉纳费米子存在的坚实证据。这一发现已促使科学家努力将马约拉纳费米子结合到量子计算中,因为他们认为,由这些神秘粒子组成的“量子比特”会比目前数字计算机中所拥有的比特更有效率地存储和处理数据。